3,611 research outputs found

    Treatment of bimodality in proficiency test of pH in bioethanol matrix

    Full text link
    The pH value in bioethanol is a quality control parameter related to its acidity and to the corrosiveness of vehicle engines when it is used as fuel. In order to verify the comparability and reliability of the measurement of pH in bioethanol matrix among some experienced chemical laboratories, reference material (RM) of bioethanol developed by Inmetro - the Brazilian National Metrology Institute - was used in a proficiency testing (PT) scheme. There was a difference of more than one unit in the value of the pH measured due to the type of internal filling electrolytic solutions (potassium chloride, KCl or lithium chloride, LiCl) from the commercial pH combination electrodes used by the participant laboratories. Therefore, bimodal distribution has occurred from the data of this PT scheme. This work aims to present the possibilities that a PT scheme provider can use to overcome the bimodality problem. Data from the PT of pH in bioethanol were treated by two different statistical approaches: kernel density model and the mixture of distributions. Application of these statistical treatments improved the initial diagnoses of PT provider, by solving bimodality problem and contributing for a better performance evaluation in measuring pH of bioethanol.Comment: 20 pages, 6 figures, Accepted for publication in Accreditation and Quality Assurance (ACQUAL

    Neighbour transitivity on codes in Hamming graphs

    Full text link
    We consider a \emph{code} to be a subset of the vertex set of a \emph{Hamming graph}. In this setting a \emph{neighbour} of the code is a vertex which differs in exactly one entry from some codeword. This paper examines codes with the property that some group of automorphisms acts transitively on the \emph{set of neighbours} of the code. We call these codes \emph{neighbour transitive}. We obtain sufficient conditions for a neighbour transitive group to fix the code setwise. Moreover, we construct an infinite family of neighbour transitive codes, with \emph{minimum distance} δ=4\delta=4, where this is not the case. That is to say, knowledge of even the complete set of code neighbours does not determine the code

    Recent advances in magnetic electrospun nanofibers for cancer theranostics application

    Get PDF
    Funding Information: This article is a result of the project PTDC/CTM-CTM/30623/2017 supported by the Lisbon Regional Operational Program (Lisboa 2020) and Alentejo Regional Operational Program (Alentejo 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund ( ERDF ). This work is funded by National Funds through FCT - Portuguese Foundation for Science and Technology, Reference UID/CTM/50025/2019 and FCT / MCTES . P.S. also acknowledges the individual contract CEECIND.03189.2020.Cancer theranostics is a recent concept that aims to combine in the same device diagnostic and therapeutic features. Magnetic nanoparticles (mNPs) are commonly used as a critical part of these systems due to their ability to respond to an external magnetic field. Consequently, mNPs can generate heat when an alternating magnetic field is applied and enhance image contrast in magnetic resonance. However, direct administration of mNPs intravenously or directly in the tumor can lead to undesired side effects because of mNP elimination by macrophages or leakage to healthy tissues. Therefore, mNPs can be retained in a polymeric nanofibrous mesh, thus preventing misplacing or loss of mNPs. Furthermore, these magnetic nanofibers can be directly implanted in the tumor site, thus ensuring high mNPs loading and higher magnetic response. In addition, polymeric nanofibers produced by electrospinning are frequently used to maintain a sustained drug release in the tumor site. Therefore, a magnetic polymeric nanofiber produced by electrospinning is an ideal nanosystem for cancer theranostics application. This review summarizes the most recent developments of magnetic nanofibers produced by electrospinning for cancer theranostics applications.proofinpres

    Diffraction and an infrared finite gluon propagator

    Get PDF
    We discuss some phenomenological applications of an infrared finite gluon propagator characterized by a dynamically generated gluon mass. In particular we compute the effect of the dynamical gluon mass on pppp and pˉp{\bar{p}}p diffractive scattering. We also show how the data on γp\gamma p photoproduction and hadronic γγ\gamma \gamma reactions can be derived from the pppp and pˉp\bar{p}p forward scattering amplitudes by assuming vector meson dominance and the additive quark model.Comment: 4 pages, 7 figures, added references and figures, changed structure. Contribution to Proceedings of XVIIIth Reuniao de Trabalho sobre Interacoes Hadronicas, Sao Paulo, Brazil, 22-24 May, 200

    Alterations in brain connectivity due to plasticity and synaptic delay

    Full text link
    Brain plasticity refers to brain's ability to change neuronal connections, as a result of environmental stimuli, new experiences, or damage. In this work, we study the effects of the synaptic delay on both the coupling strengths and synchronisation in a neuronal network with synaptic plasticity. We build a network of Hodgkin-Huxley neurons, where the plasticity is given by the Hebbian rules. We verify that without time delay the excitatory synapses became stronger from the high frequency to low frequency neurons and the inhibitory synapses increases in the opposite way, when the delay is increased the network presents a non-trivial topology. Regarding the synchronisation, only for small values of the synaptic delay this phenomenon is observed

    The Collins-Roscoe mechanism and D-spaces

    Full text link
    We prove that if a space X is well ordered (αA)(\alpha A), or linearly semi-stratifiable, or elastic then X is a D-space

    Cerenkov angle and charge reconstruction with the RICH detector of the AMS experiment

    Full text link
    The Alpha Magnetic Spectrometer (AMS) experiment to be installed on the International Space Station (ISS) will be equipped with a proximity focusing Ring Imaging Cerenkov (RICH) detector, for measurements of particle electric charge and velocity. In this note, two possible methods for reconstructing the Cerenkov angle and the electric charge with the RICH, are discussed. A Likelihood method for the Cerenkov angle reconstruction was applied leading to a velocity determination for protons with a resolution of around 0.1%. The existence of a large fraction of background photons which can vary from event to event, implied a charge reconstruction method based on an overall efficiency estimation on an event-by-event basis.Comment: Proceedings submitted to RICH 2002 (Pylos-Greece

    Scattering and Bound State Green's Functions on a Plane via so(2,1) Lie Algebra

    Full text link
    We calculate the Green's functions for the particle-vortex system, for two anyons on a plane with and without a harmonic regulator and in a uniform magnetic field. These Green's functions which describe scattering or bound states (depending on the specific potential in each case) are obtained exactly using an algebraic method related to the SO(2,1) Lie group. From these Green's functions we obtain the corresponding wave functions and for the bound states we also find the energy spectra.Comment: 21 Latex pages. Typos corrected. Results unchanged. Version to appear in JM

    Plant genetic resources for agriculture, plant breeding, and biotechnology: Experiences from Cameroon, Kenya, the Philippines, and Venezuela

    Get PDF
    "Local farming communities throughout the world face binding productivity constraints, diverse nutritional needs, environmental concerns, and significant economic and financial pressures. Developing countries address these challenges in different ways, including public and private sector investments in plant breeding and other modern tools for genetic crop improvement. In order to measure the impact of any technology and prioritize investments, we must assess the relevant resources, human capacity, clusters, networks and linkages, as well as the institutions performing technological research and development, and the rate of farmer adoption. However, such measures have not been recently assessed, in part due to the lack of complete standardized information on public plant breeding and biotechnology research in developing countries. To tackle this void, the Food and Agricultural Organization of the United Nations (FAO), in consultation with the International Food Policy Institute (IFPRI) and other organizations, designed a plant breeding and biotechnology capacity survey for implementation by FAO consultants in 100 developing countries. IFPRI, in collaboration with FAO and national experts contracted by FAO to complete in-country surveys, identified and analyzed plant breeding and biotechnology programs in four developing countries: Cameroon, Kenya, the Philippines, and Venezuela. Here, we use an innovation systems framework to examine the investments in human and financial resources and the distribution of resources among the different programs, as well as the capacity and policy development for agricultural research in the four selected countries. Based on our findings, we present recommendations to help sustain and increase the efficiency of publicly- and privately-funded plant breeding programs, while maximizing the use of genetic resources and developing opportunities for GM crop production. Policy makers, private sector breeders, and other stakeholders can use this information to prioritize investments, consider product advancement, and assess the relative magnitude of the potential risks and benefits of their investments." from Author's Abstractplant breeding, biotechnology, public research, Funding, Innovation systems, Capacity building, Biosafety,

    Generalized partition functions and interpolating statistics

    Full text link
    We show that the assumption of quasiperiodic boundary conditions (those that interpolate continuously periodic and antiperiodic conditions) in order to compute partition functions of relativistic particles in 2+1 space-time can be related with anyonic physics. In particular, in the low temperature limit, our result leads to the well known second virial coefficient for anyons. Besides, we also obtain the high temperature limit as well as the full temperature dependence of this coefficient.Comment: 12 pages, Latex, updated and enlarged versio
    • …
    corecore